binfalse
mvn: Automagically create a Docker image
May 31st, 2016Having a Docker image of your software projects may make things easier for you, but will for sure lower the barrier for users to use your tools — at least in many cases ;-)
I am developing many tools in Java using Maven to manage dependencies. Thus, I’ve been looking for means to generate corresponding Docker files using the very same build management. There are already a few approaches to build Docker images through Maven, e.g. alexec’s docker-maven-plugin, and fabric8io’s docker-maven-plugin … and so on — just to name a few. However, all theses solutions seem super-heavy and they require learning new syntax and stuff, while it is so easy and doesn’t require any third party plugins.
Build Docker images using maven-antrun
Maven’s antrun plugin allows for execution of external commands. That means, you just need to maintain a proper Dockerfile along with your sources and after building the tool with maven you can call the docker-build command to create a Docker image of the current version of your tool.
I did that for a Java web application. The Dockerfile is stored as a resource in src/main/docker/Dockerfile
is actually very simple:
Using Maven we can make sure (i) that the Dockerfile is copied next to the compiled and packaged tool in the target
directory, (ii) that the placeholder ${project.version}
in the Dockerfile is replaced with the current version of your tool, and (iii) that the docker-build command is invoked.
Copy the Dockerfile to the right place
Maven’s resources-plugin is ideally suited to deal with resources. To copy all Docker related resources to the target
directory you can use the following snippet:
In addition, the <filtering>true</filtering>
part also makes sure to replace all Maven-related placeholders, just like the ${project.version}
that we’ve been using. Thus, this solves (i) and (ii) and after the validate phase we’ll have a proper target/Dockerfile
.
Build a Docker image
Using Maven’s antrun-plugin we can call the docker tool:
This executes a command like
after the deploy phase.
Thus, it builds a docker image tagged with the current version of your tool. The build’s context is target
, so it will use the target/Dockerfile
which COPY
s the new version of your tool into the image.
Automatically build images using a Maven profile
I created a docker
profile in Maven’s configuration file that is active per default if there is a src/main/docker/Dockerfile
in your repository:
Bonus: Also push the new image to the Docker Hub
To also push the image you need to execute the push command:
And due to the latest
-confusion of Docker you also should create the latest-alias and also push that:
However, both is easy. Just append a few more exec
calls in the antrun-plugin!
The final pom.xml
snippet can be found on GitHub.
Supplement
The image for this article was derived from Wikipedia’s Apache Logo and Wikipedia’s Docker logo, licensed under the Apache License, Version 2.0.
Create an Unscanable Letter
February 8th, 2016Some time ago I’ve heard about the EURion constellation. Never heard about it? Has nothing to do with stars or astrology. It’s the thing on your money! :)
Take a closer look at your bills and you’ll discover plenty of EURions, as shown in the picture on the right. Just a few inconspicuous dots. So what’s it all about? The EURion constellation is a pattern to be recognized by imaging software, so that it can recognize banknotes. It was invented to prevent people from copying money :)
But I don’t know of any law that prohibits using that EURion, so I’ve been playing around with it. Took me some trials to find the optimal size, but I was able to create a \(LaTeX\) document that includes the EURion. That’s the essential tex code:
The whole \(LaTeX\) environment can be found on GitHub, together with the EURion image and stuff. I also provide the resulting letter.
Of course I immediately asked some friends to try to scan the letter, but it turns out, that not all scanners/printers are aware of the EURion… So it’s a bit disappointing, but I learned another thing. Good good. And to be honest, I do not have a good use case. Why should I prevent someone from printing my letters? Maybe photographers can use the EURion in their images. Copyright bullshit or something…
Monitoring of XOS devices
February 5th, 2016This week I developed some plugins for Nagios/Icinga to monitor network devices of the vendor Extreme Networks. All these plugins receive status information of, eg. switches, via SNMP.
The Basic: Check Mem, CPU, and Fans
Checking for available memory, for the device’s temperature, for the power supplies, and for fan states is quite straight forward. You just ask the switch for the values of a few OIDs, evaluate the answer, and tell Nagios/Icinga what to do.
The Simple Network Management Protocol (SNMP) is actually a very easy to use protocol. There is an SNMP server, such as a router or a switch, which exposes management data through the SNMP protocol. To access these data you just send an object identify (OID) to an SNMP server and receive the corresponding value. So called management information bases (MIB) can tell you what a certain OID stands for.
On the command line, for example, you could use snmpwalk
to iterate over an OID subtree to, e.g., obtain information about the memory on a device:
usr@srv $ snmpwalk -v 2c -c publicCommunityString switch.address.com 1.3.6.1.4.1.1916.1.32.2.2.1
1.3.6.1.4.1.1916.1.32.2.2.1.1.1 = Gauge32: 1
1.3.6.1.4.1.1916.1.32.2.2.1.2.1 = STRING: "262144"
1.3.6.1.4.1.1916.1.32.2.2.1.3.1 = STRING: "116268"
1.3.6.1.4.1.1916.1.32.2.2.1.4.1 = STRING: "7504"
1.3.6.1.4.1.1916.1.32.2.2.1.5.1 = STRING: "138372"
The OID 1.3.6.1.4.1.1916.1.32.2.2.1
addresses the memory information table of the SNMP provider at switch.address.com
.
The value at *.2.1
shows how much memory is installed, *.3.1
shows how much memory is free, *.4.1
shows how much is consumed by the system, and *.5.1
shows how much is consumed by user processes. Basic calculations tell us there are 262144/1024 = 256KB
in total and 100*116268/262144 = 44.35%
is free.
A bit more logic for a warning/critical switch and the plugin is done.
The Feature: Monitoring of the FDB
But I would probably not write about that basic stuff if there was not an extra feature! I implemented a script to also monitor the FDB. FDB is and abbreviation for forwarding databases: The switch maintains a forwarding database (FDB) of all MAC addresses received on all of its ports. It, for example, uses the information in this database to decide whether a frame should be forwarded or filtered. Each entry consists of
- the MAC address of the device behind the port
- the associated VLAN
- the age of the entry – depending on the configuration the entries age out of the table
- some flags – e.g. is the entry dynamic or static
- the port
The table may look like the following:
> show fdb
Mac Vlan Age Flags Port / Virtual Port List
------------------------------------------------------------------------------
01:23:45:67:89:ab worknet(0060) 0056 n m 9
01:23:42:67:89:ab mobnet(0040) 0001 n m 21
Flags : d - Dynamic, s - Static, p - Permanent, n - NetLogin, m - MAC, i - IP,
x - IPX, l - lockdown MAC, L - lockdown-timeout MAC, M- Mirror, B - Egress Blackhole,
b - Ingress Blackhole, v - MAC-Based VLAN, P - Private VLAN, T - VLAN translation,
D - drop packet, h - Hardware Aging, o - IEEE 802.1ah Backbone MAC,
S - Software Controlled Deletion, r - MSRP
As soon as the switch gets a frame on one port it learns the corresponding MAC address, port number, etc. into this table. So if a frame for this MAC address arrives it know where to send it to.
However, that content of a networking class.
All we need to know is that a switch can tell you which device which MAC address is is connected to which port.
And that’s the idea of check_extreme_fdb.pl
! It compares the entries of the FDB with some expected entries in an CSV file. The CSV is supposed to contain three coloumns:
mac,port,vlan
If a MAC address in the FDB matches the MAC address in the CSV file it checks the ports and vlans. If those do not match, it will raise an error.
For the CSV: Feel free to leave port or vlan empty if you do not care about this detail.
That means, if you just want to make sure that the device with the MAC 01:23:45:67:89:ab
is in vlan worknet
you add an entry such as:
01:23:45:67:89:ab,,worknet
Use -e <FILE>
to pass the CSV file containing expected entry to the program and call it like beckham:
perl -w check_extreme_fdb.pl -s <SWITCH> -C <COMMUNITY-STRING> -e <EXPECTED>
Here, SWITCH
being the switch’s address and COMMUNITY-STRING
beeing the SNMP “passphrase”. You may also want to add -w
to raise a warning if one of the entries in the CSV file wasn’t found in the FDB. To create a sample CSV file that matches the current FDB you can call it with --print
.
To get the script have a look at the check_extreme_fdb.pl
software page.
More Extreme Stuff
In addition there are some other scripts to monitor Extreme Networks devices:
Do I have a CD-RW?
January 6th, 2016You don’t know whether the CD drive on your machine is able to burn CDs? And too lazy to go off with your head under your table? Or you’re remote on the machine? Then that’s your command line:
$ cat /proc/sys/dev/cdrom/info
CD-ROM information, Id: cdrom.c 3.20 2003/12/17
drive name: sr0
drive speed: 32
drive # of slots: 1
Can close tray: 1
Can open tray: 1
Can lock tray: 1
Can change speed: 1
Can select disk: 0
Can read multisession: 1
Can read MCN: 1
Reports media changed: 1
Can play audio: 1
Can write CD-R: 1
Can write CD-RW: 1
Can read DVD: 1
Can write DVD-R: 1
Can write DVD-RAM: 1
Can read MRW: 1
Can write MRW: 1
Can write RAM: 1
Docker Jail for Skype
January 4th, 2016As I’m now permanently installed at our University (yeah!) I probably need to use skype more often than desired. However, I still try to avoid proprietary software, and skype is the worst of all. Skype is an
obfuscated malicious binary blob with network capabilities
as jvoisin beautifully put into words. I came in contact with skype multiple times and it was always a mess. Ok, but what are the options if I need skype? So far I’ve been using a virtual box if I needed to call somebody who insisted on using skype, but now that I’ll be using skype more often I need an alternative to running a second OS on my machine. My friend Tom meant to make a joke about using Docker and … TA-DAH! … Turns out it’s actually possible to jail a usable skype inside a Docker container! Guided by jvoisin’s article Running Skype in docker I created my own setup:
The Dockerfile
The Dockerfile
is available from the skype-on-docker project on GitHub. Just clone the project and change into the directory:
$ git clone https://github.com/binfalse/skype-on-docker.git
$ cd skype-on-docker
$ ls -l
total 12
-rw-r--r-- 1 martin martin 32 Jan 4 17:26 authorized_keys
-rw-r--r-- 1 martin martin 1144 Jan 4 17:26 Dockerfile
-rw-r--r-- 1 martin martin 729 Jan 4 17:26 README.md
The Docker image is based on a Debian:stable. It will install an OpenSSH server (it exposes 22
) and download the skype binaries. It will also install the authorized_keys
file in the home directories of root and the unprivileged user. Thus, to be able to connect to the container you need to copy your public SSH key into that file:
$ cat ~/.ssh/id_rsa.pub >> authorized_keys
Good so far? Ok, then go for it! Build a docker image:
$ docker build -t binfalse/skype .
This might take a while. Docker will execute the commands given in the Dockerfile
and create a new Docker image with the name binfalse/skype
. Feel free to choose a different name..
As soon as that’s finished you can instantiate and run a new container using:
$ docker run -d -p 127.0.0.1:55757:22 --name skype_container binfalse/skype
This will start the container as a daemon (-d
) with the name skype_container (--name skype_container
) and the host’s port 55757
mapped to the container’s port 22
(-p 127.0.0.1:55757:22
).
Give it a millisecond to come up and then you should be able to connect to that container via ssh. From that shell you should be able to start an configure skype:
$ ssh -X -p 55555 docker@127.0.0.1
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Mon Jan 4 23:07:37 2016 from 172.17.42.1
$ skype
You can immediately go and do your chats and stuff, but you can also just configure skype. Do setup everything just like you want to find it when starting skype, for example tick the auto-login button to get rid of the login screen etc. As soon as that’s done, commit the changes to build a new image reflecting your preferences:
$ docker commit skype_container binfalse/deb-skype
Now you’ll have an image called binfalse/deb-skype
that contains a fully configured skype installation. Just kill the other container:
$ docker stop skype_container
$ docker rm skype_container
And now your typical workflow might look like:
docker run -d -p 127.0.0.1:55757:22 --name skype__ binfalse/deb-skype
sleep 1
ssh -X -p 55757 docker@127.0.0.1 skype && docker rm -f skype__
Feel free to cast it in a mould just as I did.
The script is also available from my apt repo, it’s name is bf-skype-on-docker
:
echo "deb http://apt.binfalse.de binfalse main" > /etc/apt/sources.list.d/binfalse.list
apt-get update && apt-get install bf-skype-on-docker